
LECTURE 33 ANTIDERIVATIVES AND INTEGRATION

Linearity of Antidifferentiation

Example. Find the general antiderivative of the following functions:

(1) f (x) = x5.
(2) g (x) = 1√

x
.

(3) h (x) = sin (2x).
(4) i (x) = cos

(
x
2

)
.

(5) j (x) = e−3x.
(6) k (x) = 2x.

Antidi�erentiation is a linear process (like di�erentiation), i.e. the antiderivative of kf (x) ± hg (x) with
constants k, h is

kF (x)± hG (x) + C

where F and G are the antiderivatives of f and g respectively.

Example. Find the general antiderivative of

f (x) =
3√
x
+ sin (2x) .

Solution. We utilize the fact that we can simply �nd the antiderivative of each component and add up.
De�ne

g (x) =
1√
x
= x−

1
2 , h (x) = sin (2x) .

Then, we have

f (x) = 3g (x) + h (x) =⇒ F (x) = 3G (x) +H (x) + C

where G and H are antiderivatives of g and h respectively. All you need to make sure is that they are
antiderivatives, not necessarily a general one, since the constant C is added already.

G (x) = 2x
1
2 , H (x) = −1

2
cos (2x)

and thus

F (x) = 6
√
x− 1

2
cos (2x) .

Initial Value Problems and Differential Equations

Finding an antiderivative for a function f (x) is the same problem as �nding a function y (x) that satis�es
the equation

dy

dx
= f (x) .

This is called a di�erential equation. The �nd y (x), we must �nd the general antiderivative of f . This
incurs a constant, which we can determine if we know a point of y (x), usually speci�ed as an initial

condition

y (x0) = y0.

Combining the di�erential equation and the initial condition, we obtain an initial value problem.
This type of problems appears all branches of science.

Example. A hot-air balloon ascending at the rate of 6 meters/sec is at a height 80 meters above the ground
when a package is dropped. How long does it take the package to reach the ground?
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Solution. Physics tells us that the package has an initial velocity of 6 meters/sec upwards the moment it
is �dropped�. Then, it goes on with free fall.

Let v (t) be the velocity of the package at time t. Choose up as the positive direction. All we know is
v (0) = +6.

However, the package is at free fall, which means it has a constant acceleration towards the earth, at
−9.8 m2/s. Note also, that acceleration is the time derivative of velocity, dv

dt . Thus, we have the di�erential
equation

dv

dt
= −9.8

and an initial condition

v (0) = 6.

To solve the di�erential equation, we �nd the general antiderivative of the constant −9.8, which is

v (t) = −9.8t+ C.

To determine C, we use the initial condition

6 = v (0) = −9.8 · 0 + C =⇒ C = 6.

Therefore,

v (t) = −9.8t+ 6.

Now, the question asks for when the package hits the ground, that is, when the position is at 0. Recall that
velocity v (t) is the time derivative of the position s (t), which satis�es the di�erential equation,

ds

dt
= v (t) = −9.8t+ 6

with initial condition (we started 80 meters above ground)

s (0) = 80.

To �nd s (t), we �nd the general antiderivative of v (t),

s (t) = −4.9t2 + 6t+D.

To �nd the constant D, we use the initial condition

80 = s (0) = −4.9 (0)2 + 6 (0) +D =⇒ D = 80.

Therefore,

s (t) = −4.9t2 + 6t+ 80.

The package will hit the ground when s (t) = 0. So, we need to �nd the zero of s (t). By the quadratic
formula, we have

t =
−6±

√
62 + 4 · 4.9 · 80
−9.8

and �nd

t ≈ 4.69898, t ≈ −3.47449.
We certainly reject the negative root. The package hits around after approximately 4.69898 seconds after it
is dropped o� from the rising balloon.

Indefinite Integral

Instead of asking �please �nd the antiderivative of f � everytime, we condense all that request into one
simple yet historically signi�cant symbol � the integral sign.

De�nition. The collection of all antiderivatives of f is called the inde�nite integral of f with respect to
x, and is denoted by ∫

f (x) dx.

The symbol
∫
is an integral sign. The function f is the integrand of the intergral, and x is the variable

of integration.
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Example. Evaluate ∫ (
x2 − 2x+ 5

)
dx

Solution. ∫ (
x2 − 2x+ 5

)
dx =

x3

3
− x2 + 5x+ C

Remark. Evaluating an inde�nite integral is the same as �nding the general antiderivative of the integrand.

This means, the integral also has the linear property, that is∫
(af (x) + bg (x)) dx = a

∫
f (x) + b

∫
g (x) dx,

you can divide and conquer, but only when the functions are added or subtracted.
There is NO such rule as∫

(f (x) g (x)) dx =

(∫
f (x) dx

)(∫
g (x) dx

)
.

Area and Estimating with Finite Sums

There are various quests in classical geometry that involve formulas of areas and volumes of shapes. For
example, the formula for the area of a circle came from Archimedes by inscribing polygons inside a circle.
He computed the area of the polygons for each choice of number of sides and then found a pattern. He
then took a limit as the number of sides goes to in�nity. At the time, π is not known. Archimedes' formula
for the circle is A = 1

2Cr where C is the circumference of the circle, and his proof relies on comparing the
area of a circle (unknown at the time) to the area of a triangle with base C and height r. In modern day
understanding, this area formula certainly works since C = 2πr.

So, why integration, now? What really is integration? Archimedes' approach to the area of the cirlce,
in fact, involves the area of a polygon. The area of a polygon involves adding up lots of identical triangles.
Each of these triangles is an isosceles, with sides equal to the radius r. As we increase the number of sides,
the triangle's height and base changes while the side length is preserved to be r.

We are used to adding things up discretely as the objects we add are countable. Integration is a
concept of adding things up, continuously. In other words, you are adding very little things up, each with
in�nitesimal (varying according to some law/function) size. This makes computing an area a special case of
integration. Whenever you need to �add very little things up�, you think of integration.

Example. Scienti�c processes involving integration.

(1) Area, volume, etc.
(2) Displacement of a continuously moving object with time-varying velocity.
(3) Energy of a continuously moving object with time-varying
(4) Mass of an object with spatially inhomogeneous density.
(5) Probability of an event characterized by a range of values governed by some continuous density

function.

In the examples, we see that there is always something about �varing� quantities � it is captured by a
function f (x). Here, we consider a concrete example.

Example. Find the area below the graph of the function f (x) =
√
2− x2 by approximating with two

vertical bars.


